Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 12(10): e9367, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36254299

RESUMEN

Ecological character displacement between the sexes, and sexual selection, integrate into a convergent set of factors that produce sexual variation. Ecologically modulated, sexually mediated variation within and between sexes may be a major contributor to the amount of total variation that selection can act on in species. Threespine stickleback (Gasterosteus aculeatus) display rapid adaptive responses and sexual variation in many phenotypic traits. We examined phenotypic variation in the skull, pectoral and pelvic girdles of threespine stickleback from two freshwater and two coastal marine sites on the Sunshine Coast of British Columbia, Canada, using an approach that avoids a priori assumptions about bimodal patterns of variation. We quantified shape and size of the cranial, pectoral and pelvic regions of sticklebacks in marine and freshwater habitats using 3D geometric morphometrics and an index of sexually mediated variation. We show that the expression of phenotypic variation is structured in part by the effects of both habitat marine vs freshwater and the effects of individual sites within each habitat. Relative size exerts variable influence, and patterns of phenotypic variation associated with sex vary among body regions. This fine-grained quantification of sexually mediated variation in the context of habitat difference and different anatomical structures indicates a complex relationship between genetically inferred sex and environmental factors, demonstrating that the interplay between shared genetic background and sexually mediated, ecologically based selective pressures structures the phenotypic expression of complex traits.

2.
Mol Ecol ; 31(8): 2312-2326, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35152483

RESUMEN

Species distribution models (SDMs) are widely used to predict range shifts but could be unreliable under climate change scenarios because they do not account for evolution. The thermal physiology of a species is a key determinant of its range and thus incorporating thermal trait evolution into SDMs might be expected to alter projected ranges. We identified a genetic basis for physiological and behavioural traits that evolve in response to temperature change in natural populations of threespine stickleback (Gasterosteus aculeatus). Using these data, we created geographical range projections using a mechanistic niche area approach under two climate change scenarios. Under both scenarios, trait data were either static ("no evolution" models), allowed to evolve at observed evolutionary rates ("evolution" models) or allowed to evolve at a rate of evolution scaled by the trait variance that is explained by quantitative trait loci (QTL; "scaled evolution" models). We show that incorporating these traits and their evolution substantially altered the projected ranges for a widespread panmictic marine population, with over 7-fold increases in area under climate change projections when traits are allowed to evolve. Evolution-informed SDMs should improve the precision of forecasting range dynamics under climate change, and aid in their application to management and the protection of biodiversity.


Asunto(s)
Cambio Climático , Smegmamorpha , Animales , Fenotipo , Sitios de Carácter Cuantitativo/genética , Smegmamorpha/genética
3.
Trends Ecol Evol ; 36(9): 860-873, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34218955

RESUMEN

Physical principles and laws determine the set of possible organismal phenotypes. Constraints arising from development, the environment, and evolutionary history then yield workable, integrated phenotypes. We propose a theoretical and practical framework that considers the role of changing environments. This 'ecomechanical approach' integrates functional organismal traits with the ecological variables. This approach informs our ability to predict species shifts in survival and distribution and provides critical insights into phenotypic diversity. We outline how to use the ecomechanical paradigm using drag-induced bending in trees as an example. Our approach can be incorporated into existing research and help build interdisciplinary bridges. Finally, we identify key factors needed for mass data collection, analysis, and the dissemination of models relevant to this framework.


Asunto(s)
Evolución Biológica , Ecosistema , Fenotipo , Árboles
4.
Genetics ; 217(1): 1-15, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33683369

RESUMEN

Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24-35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.


Asunto(s)
Metilación de ADN , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Smegmamorpha/genética , Animales , Islas de CpG , Ecotipo , Epigenoma , Hibridación Genética , Carácter Cuantitativo Heredable
5.
Ann Anat ; 231: 151527, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32380193

RESUMEN

External morphological metrics have featured prominently in comparative studies examining the morphological convergence that characterizes anoline ecomorphs. To what degree the appendicular-skeletal morphology of Greater Antillean island Anolis lizards tracks their diversity and ecological adaptation, however, remains relatively unexplored. Here we employ computed tomographic scanning techniques to visualize in situ the scapulocoracoid of ecomorph representatives (trunk-ground, trunk-crown, crown-giant, twig) from three islands (Jamaica, Hispaniola, and Puerto Rico), and compare its three-dimensional geometry using qualitative-descriptive and quantitative-morphometric techniques. In contrast to our previous, similarly-conducted study of the pelvic girdle of these same species, the form of the scapulocoracoid varies markedly both within and between species, with much of the variation relating to phylogenetic relationship, specimen size, and assigned ecomorph category. Morphometric variation that correlates with size and/or phylogenetic signal varies between species and cannot be eliminated from the data set without markedly reducing its overall variability. The discovered patterns of skeletal variation are consistent with the demands of locomotor mechanics imposed by the structural configuration of the microhabitat of these ecomorphs. Most pertinently the ecomorphs differ in the anteroposterior length of the coracoid, the dorsoventral height of the scapulocoracoid, the dorsoventral height of the scapula in relation to the height of the suprascapula, and the relative positioning of the borders of the scapulocoracoid fenestra. In the examined ecomorph categories these skeletal differences likely relate to microhabitat usage by permitting different degrees of tilting and displacement of the scapulocoracoid in the parasagittal plane and influencing the sizes of muscle origins and the vectors of their actions. These differences relate to the amount of humeral adduction applied during its protraction, and to the structural stability of the shoulder girdle during acrobatic maneuvers, thus influencing the perch diameter that can be effectively negotiated, a critical factor in the microhabitat structure of Anolis ecomorphs.


Asunto(s)
Apófisis Coracoides/anatomía & histología , Lagartos/anatomía & histología , Escápula/anatomía & histología , Animales , Femenino , Lagartos/clasificación , Masculino , Caracteres Sexuales , Indias Occidentales
6.
Evol Dev ; 21(5): 247-264, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31268245

RESUMEN

Biological complexity is a key component of evolvability, yet its study has been hampered by a focus on evolutionary trends of complexification and inconsistent definitions. Here, we demonstrate the utility of bringing complexity into the framework of epigenetics to better investigate its utility as a concept in evolutionary biology. We first analyze the existing metrics of complexity and explore the link between complexity and adaptation. Although recently developed metrics allow for a unified framework, they omit developmental mechanisms. We argue that a better approach to the empirical study of complexity and its evolution includes developmental mechanisms. We then consider epigenetic mechanisms and their role in shaping developmental and evolutionary trajectories, as well as the development and organization of complexity. We argue that epigenetics itself could have emerged from complexity because of a need to self-regulate. Finally, we explore hybridization complexes and hybrid organisms as potential models for studying the association between epigenetics and complexity. Our goal is not to explain trends in biological complexity but to help develop and elucidate novel questions in the investigation of biological complexity and its evolution.


Asunto(s)
Evolución Biológica , Epigénesis Genética , Animales , Modelos Biológicos
7.
NPJ Sci Learn ; 4: 10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341638

RESUMEN

Advances in computer visualization enabling both 2D and 3D representation have generated tools to aid perception of spatial relationships and provide a new forum for instructional design. A key knowledge gap is the lack of understanding of how the brain neurobiologically processes and learns from spatially presented content, and new quantitative variables are required to address this gap. The objective of this study was to apply quantitative neural measures derived from electroencephalography (EEG) to examine stereopsis in anatomy learning by comparing mean amplitude changes in N250 (related to object recognition) and reward positivity (related to responding to feedback) event related to potential components using a reinforcement-based learning paradigm. Health sciences students (n = 61) learned to identify and localize neuroanatomical structures using 2D, 3D, or a combination of models while EEG and behavioral (accuracy) data were recorded. Participants learning using 3D models had a greater object recognition (N250 amplitude) compared to those who learned from 2D models. Based on neurological results, interleaved learning incorporating both 2D and 3D models provided an advantage in learning, retention, and transfer activities represented by decreased reward positivity amplitude. Behavioral data did not have the same sensitivity as neural data for distinguishing differences in learning with and without stereopsis in these learning activities. Measuring neural activity reveals new insights in applied settings for educators to consider when incorporating stereoscopic models in the design of learning interventions.

8.
BMC Evol Biol ; 18(1): 113, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-30021523

RESUMEN

BACKGROUND: Populations that have repeatedly colonized novel environments are useful for studying the role of ecology in adaptive divergence - particularly if some individuals persist in the ancestral habitat. Such "contemporary ancestors" can be used to demonstrate the effects of selection by comparing phenotypic and genetic divergence between the derived population and their extant ancestors. However, evolution and demography in these "contemporary ancestors" can complicate inferences about the source (standing genetic variation, de novo mutation) and pace of adaptive divergence. Marine threespine stickleback (Gasterosteus aculeatus) have colonized freshwater environments along the Pacific coast of North America, but have also persisted in the marine environment. To what extent are marine stickleback good proxies of the ancestral condition? RESULTS: We sequenced > 5800 variant loci in over 250 marine stickleback from eight locations extending from Alaska to California, and phenotyped them for platedness and body shape. Pairwise FST varied from 0.02 to 0.18. Stickleback were divided into five genetic clusters, with a single cluster comprising stickleback from Washington to Alaska. Plate number, Eda, body shape, and candidate loci showed evidence of being under selection in the marine environment. Comparisons to a freshwater population demonstrated that candidate loci for freshwater adaptation varied depending on the choice of marine populations. CONCLUSIONS: Marine stickleback are structured into phenotypically and genetically distinct populations that have been evolving as freshwater stickleback evolved. This variation complicates their usefulness as proxies of the ancestors of freshwater populations. Lessons from stickleback may be applied to other "contemporary ancestor"-derived population studies.


Asunto(s)
Adaptación Fisiológica/genética , Organismos Acuáticos/genética , Variación Genética , Filogenia , Smegmamorpha/genética , Alaska , Animales , Secuencia de Bases , California , Femenino , Agua Dulce , Frecuencia de los Genes/genética , Genética de Población , Genotipo , Geografía , Masculino , Océano Pacífico , Polimorfismo de Nucleótido Simple/genética , Selección Genética , Washingtón
9.
J Morphol ; 279(8): 1016-1030, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29892985

RESUMEN

Ecological niche partitioning of Anolis lizards of the Greater Antillean islands has been the focus of many comparative studies, and much is known about external morphological convergence that characterizes anole ecomorphs. Their internal anatomy, however, has rarely been explored in an ecomorphological context, and it remains unknown to what degree skeletal morphology tracks the diversity and ecological adaptation of these lizards. Herein, we employ CT scanning techniques to visualise the skeleton of the pelvic girdle in situ, and 3D geometric morphometrics to compare the form of the ilium, ischium, and pubis within and between ecomorphs. We examine 26 species of anoles representing four ecomorphs (trunk-ground, trunk-crown, crown-giant, twig) from three islands (Jamaica, Hispaniola, and Puerto Rico). The subtle variations in pelvic girdle morphology discovered are directly associable with all three parameters that we set out to focus on: phylogenetic relationship, specimen size, and assigned ecomorph category. Morphometric variation that correlates with size and/or phylogenetic signal varies between species and cannot be eliminated from the data set without markedly reducing its overall variability. The discovered patterns of skeletal variation are consistent with the demands of locomotor mechanics pertinent to the structural configuration of the microhabitat of three of the four ecomorphs, with the fourth having no discernible distinctive features. This manifests itself chiefly in the relative anteroposterior extent and anteroventral inclination of the ilium and pubis, which differ between ecomorphs and are postulated to reflect optimization of the direction of muscle vectors of the femoral protractors and retractors. Our investigation of the form of the pelvic girdle of anoles allows us to generalize our findings to entire ecomorph categories within a broad phylogenetic and biogeographic context. Differences in the form and configuration of the postcranial skeleton are directly related to ecological patterns.


Asunto(s)
Huesos/anatomía & histología , Fenómenos Ecológicos y Ambientales , Lagartos/anatomía & histología , Pelvis/anatomía & histología , Análisis de Varianza , Animales , Huesos/diagnóstico por imagen , Imagenología Tridimensional , Islas , Filogenia , Análisis de Componente Principal , Especificidad de la Especie , Tomografía Computarizada por Rayos X
10.
Front Hum Neurosci ; 12: 38, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467638

RESUMEN

In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise.

11.
Am J Phys Anthropol ; 165(2): 327-342, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29178597

RESUMEN

OBJECTIVES: Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. METHODS: Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. RESULTS: The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. CONCLUSIONS: Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally.


Asunto(s)
Tamaño Corporal/fisiología , Cara/anatomía & histología , Adolescente , Adulto , Antropología Física , Evolución Biológica , Biometría , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Imagenología Tridimensional , Masculino , Tanzanía , Estados Unidos , Adulto Joven
12.
Anat Sci Educ ; 10(2): 144-151, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27533319

RESUMEN

Ultrasonography is increasingly used in medical education, but its impact on learning outcomes is unclear. Adding ultrasound may facilitate learning, but may also potentially overwhelm novice learners. Based upon the framework of cognitive load theory, this study seeks to evaluate the relationship between cognitive load associated with using ultrasound and learning outcomes. The use of ultrasound was hypothesized to facilitate learning in anatomy for 161 novice first-year medical students. Using linear regression analyses, the relationship between reported cognitive load on using ultrasound and learning outcomes as measured by anatomy laboratory examination scores four weeks after ultrasound-guided anatomy training was evaluated in consenting students. Second anatomy examination scores of students who were taught anatomy with ultrasound were compared with historical controls (those not taught with ultrasound). Ultrasound's perceived utility for learning was measured on a five-point scale. Cognitive load on using ultrasound was measured on a nine-point scale. Primary outcome was the laboratory examination score (60 questions). Learners found ultrasound useful for learning. Weighted factor score on "image interpretation" was negatively, but insignificantly, associated with examination scores [F (1,135) = 0.28, beta = -0.22; P = 0.61]. Weighted factor score on "basic knobology" was positively and insignificantly associated with scores; [F (1,138) = 0.27, beta = 0.42; P = 0.60]. Cohorts exposed to ultrasound had significantly higher scores than historical controls (82.4% ± SD 8.6% vs. 78.8% ± 8.5%, Cohen's d = 0.41, P < 0.001). Using ultrasound to teach anatomy does not negatively impact learning and may improve learning outcomes. Anat Sci Educ 10: 144-151. © 2016 American Association of Anatomists.


Asunto(s)
Anatomía/educación , Cognición , Educación de Pregrado en Medicina/métodos , Aprendizaje , Estudiantes de Medicina/psicología , Enseñanza , Ultrasonografía , Alberta , Comprensión , Gráficos por Computador , Instrucción por Computador , Curriculum , Evaluación Educacional/métodos , Escolaridad , Humanos , Modelos Lineales , Análisis de Componente Principal , Facultades de Medicina , Encuestas y Cuestionarios , Carga de Trabajo
13.
PLoS Biol ; 14(9): e2000197, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27606604

RESUMEN

Elucidating the causes of congenital heart defects is made difficult by the complex morphogenesis of the mammalian heart, which takes place early in development, involves contributions from multiple germ layers, and is controlled by many genes. Here, we use a conditional/invertible genetic strategy to identify the cell lineage(s) responsible for the development of heart defects in a Nipbl-deficient mouse model of Cornelia de Lange Syndrome, in which global yet subtle transcriptional dysregulation leads to development of atrial septal defects (ASDs) at high frequency. Using an approach that allows for recombinase-mediated creation or rescue of Nipbl deficiency in different lineages, we uncover complex interactions between the cardiac mesoderm, endoderm, and the rest of the embryo, whereby the risk conferred by genetic abnormality in any one lineage is modified, in a surprisingly non-additive way, by the status of others. We argue that these results are best understood in the context of a model in which the risk of heart defects is associated with the adequacy of early progenitor cell populations relative to the sizes of the structures they must eventually form.


Asunto(s)
Defectos del Tabique Interatrial/genética , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular , Línea Celular , Femenino , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Corazón/embriología , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Masculino , Ratones Transgénicos , Especificidad de Órganos , Penetrancia , Factores de Riesgo , Factores de Transcripción/metabolismo
14.
Proc Biol Sci ; 283(1838)2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629033

RESUMEN

Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process.


Asunto(s)
Peces , Especiación Genética , Locomoción , Conducta Predatoria , Aislamiento Reproductivo , Animales , Ecología , Fenotipo
15.
Integr Comp Biol ; 55(1): 166-78, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25908668

RESUMEN

The tight fit between form and function in organisms suggests the influence of adaptive evolution in biomechanics; however, the prevalence of adaptive traits, the mechanisms by which they arise and the corresponding responses to selection are subjects of extensive debate. We used three-dimensional microcomputed tomography and geometric morphometrics to characterize the structure of phenotypic covariance within the G. aculeatus trophic apparatus and its supporting structures in wild and controlled crosses of fish from two different localities. Our results reveal that while the structure of phenotypic covariance is conserved in marine and freshwater forms, it may be disrupted in the progeny of artificial crosses or during rapid adaptive divergence events. We discuss these results within the context of integrating covariance structure with quantitative genetics, toward establishing predictive links between genes, development, biomechanics, and the environment.


Asunto(s)
Evolución Biológica , Fenotipo , Smegmamorpha/anatomía & histología , Smegmamorpha/fisiología , Animales , Ambiente , Femenino , Imagenología Tridimensional/veterinaria , Masculino , Cráneo/anatomía & histología , Cráneo/fisiología , Microtomografía por Rayos X/veterinaria
16.
PLoS One ; 10(2): e0118355, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25692674

RESUMEN

Phenotypic integration patterns in the mammalian skull have long been a focus of intense interest as a result of their suspected influence on the trajectory of hominid evolution. Here we test the hypothesis that perturbation of cartilage growth, which directly affects only the chondrocranium during development, will produce coordinated shape changes in the adult calvarium and face regardless of mechanism. Using two murine models of cartilage undergrowth that target two very different mechanisms, we show that strong reduction in cartilage growth produces a short, wide, and more flexed cranial base. This in turn produces a short, wide face in both models. Cranial base and face are already correlated early in ontogeny, and the relationship between these modules gains structure through postnatal growth and development. These results provide further evidence that there exist physical interactions between developing parts of the phenotype that produce variation at a distance from the actual locus upon which a particular selective pressure is acting. Phenotypic changes observed over the course of evolution may not all require adaptationist explanations; rather, it is likely that a substantial portion of observed phenotypic variation over the history of a clade is not directly adaptive but rather a secondary consequence of some local response to selection.


Asunto(s)
Encéfalo/anatomía & histología , Cara/anatomía & histología , Base del Cráneo/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Epigénesis Genética , Ratones , Ratones Transgénicos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Análisis de Componente Principal
17.
J Anat ; 226(2): 169-74, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25572636

RESUMEN

The meniscal roots, or insertional ligaments, firmly attach the menisci to tibial plateau. These strong attachments anchor the menisci and allow for the generation of hoop stress in the tissue. The meniscal roots have a ligament-like structure that transitions into the fibrocartilagenous structure of the meniscal body. The purpose of this study was to carry out a complete analysis of the structure and tissue organization from the body of the meniscus through the transition region and into the insertional roots. Serial sections were obtained from the meniscal roots into the meniscal body in fixed juvenile bovine menisci. Sections were stained for collagen and proteoglycans (PG) using fast green and safranin-o staining protocols. Unstained sections were imaged used a backlit stereo microscope. Optical projection tomography (OPT) was employed to evaluate the three-dimensional collagen architecture of the root-meniscus transition in lapine menisci. Tie-fibres were observed in the sections of the ligaments furthest from the bovine meniscal body. Blood vessels were observed to be surrounded by these tie-fibres and a PG-rich region within the ligaments. Near the tibial insertion, the roots contained large ligament-like collagen fascicles. In sections approaching the meniscus, there was an increase in tie-fibre size and density. Small tie-fibres extended into the ligament from the epiligamentous structure in the outermost sections of the meniscal roots, while large tie-fibre bundles were apparent at the meniscus transition. The staining pattern indicates that the root may continue into the outer portion of the meniscus where it then blends with the more fibrocartilage-like inner portions of the tissue. In unstained sections it was observed that the femoral side of the epiligamentous structure surrounding the root becomes more fibrous and thickens in the inferior inner portion of the posterior medial root. This thickening changes the shape of the root to more closely resemble the meniscus wedge shape. These observations support the concept of root continuity with the outer portion of the meniscus, thereby connecting with the hoop-like structure of the peripheral meniscus. OPT identified continuous collagen organization from the root into the meniscal body in longitudinal sections. In the radial direction, the morphology of the root continues into the meniscal body consistent with the serially sectioned bovine menisci. Blood vessels were prevalent on the periphery of the root. These blood vessels then arborized to cover the anterior femoral surface of the meniscus. This is the first study of the structural transition between the insertional ligaments (roots) and the fibrocartilagenous body of the menisci. These new structural details are important to understanding the meniscal load-bearing mechanism in the knee.


Asunto(s)
Meniscos Tibiales/anatomía & histología , Animales , Bovinos , Colágeno/análisis , Glicosaminoglicanos/análisis , Humanos , Fenazinas/análisis , Tomografía de Coherencia Óptica
18.
Anat Sci Educ ; 8(3): 197-204, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24903679

RESUMEN

Ultrasonography is increasingly used for teaching anatomy and physical examination skills but its effect on cognitive load is unknown. This study aimed to determine ultrasound's perceived utility for learning, and to investigate the effect of cognitive load on its perceived utility. Consenting first-year medical students (n = 137) completed ultrasound training that includes a didactic component and four ultrasound-guided anatomy and physical examination teaching sessions. Learners then completed a survey on comfort with physical examination techniques (three items; alpha = 0.77), perceived utility of ultrasound in learning (two items; alpha = 0.89), and cognitive load on ultrasound use [measured with a validated nine-point scale (10 items; alpha = 0.88)]. Learners found ultrasound useful for learning for both anatomy and physical examination (mean 4.2 ± 0.9 and 4.4 ± 0.8, respectively; where 1 = very useless and 5 = very useful). Principal components analysis on the cognitive load survey revealed two factors, "image interpretation" and "basic knobology," which accounted for 60.3% of total variance. Weighted factor scores were not associated with perceived utility in learning anatomy (beta = 0.01, P = 0.62 for "image interpretation" and beta = -0.04, P = 0.33 for "basic knobology"). However, factor score on "knobology" was inversely associated with perceived utility for learning physical examination (beta = -0.06; P = 0.03). While a basic introduction to ultrasound may suffice for teaching anatomy, more training may be required for teaching physical examination. Prior to teaching physical examination skills with ultrasonography, we recommend ensuring that learners have sufficient knobology skills.


Asunto(s)
Anatomía/educación , Cognición/fisiología , Aprendizaje/fisiología , Examen Físico/métodos , Ultrasonografía/psicología , Percepción Visual/fisiología , Adulto , Competencia Clínica , Curriculum , Interpretación Estadística de Datos , Educación Médica/métodos , Humanos , Proyectos Piloto , Encuestas y Cuestionarios
19.
Evolution ; 68(11): 3184-98, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25130322

RESUMEN

Variation in semicircular canal morphology correlates with locomotor agility among species of mammals. An experimental evolutionary mouse model was used to test the hypotheses that semicircular canal morphology (1) evolves in response to selective breeding for increased locomotor activity, (2) exhibits phenotypic plasticity in response to early-onset chronic exercise, and (3) is unique in individuals possessing the minimuscle phenotype. We examined responses in canal morphology to prolonged wheel access and selection in laboratory mice from four replicate lines bred for high voluntary wheel-running (HR) and four nonselected control (C) lines. Linear measurements and a suite of 3D landmarks were obtained from 3D reconstructions of µCT-scanned mouse crania (µCT is microcomputed tomography). Body mass was smaller in HR than C mice and was a significant predictor of both radius of curvature and 3D canal shape. Controlling for body mass, radius of curvature did not differ statistically between HR and C mice, but semicircular canal shape did. Neither chronic wheel access nor minimuscle affected radius of curvature or canal shape These findings suggest that semicircular canal morphology is responsive to evolutionary changes in locomotor behavior, but the pattern of response is potentially different in small- versus large-bodied species.


Asunto(s)
Evolución Biológica , Ratones/anatomía & histología , Ratones/genética , Actividad Motora , Canales Semicirculares/anatomía & histología , Animales , Masculino , Mamíferos , Ratones/fisiología , Canales Semicirculares/fisiología , Cráneo/diagnóstico por imagen , Microtomografía por Rayos X
20.
Mol Ecol ; 23(7): 1650-2, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24667008

RESUMEN

Perhaps Darwin would agree that speciation is no longer the mystery of mysteries that it used to be. It is now generally accepted that evolution by natural selection can contribute to ecological adaptation, resulting in the evolution of reproductive barriers and, hence, to the evolution of new species (Schluter & Conte 2009; Meyer 2011; Nosil 2012). From genes that encode silencing proteins that cause infertility in hybrid mice (Mihola et al. 2009), to segregation distorters linked to speciation in fruit flies (Phadnis & Orr 2009), or pollinator-mediated selection on flower colour alleles driving reinforcement in Texan wildflowers (Hopkins & Rausher 2012), characterization of the genes that drive speciation is providing clues to the origin of species (Nosil & Schluter 2011). It is becoming apparent that, while recent work continues to overturn historical ideas about sympatric speciation (e.g. Barluenga et al. 2006), ecological circumstances strongly influence patterns of genomic divergence, and ultimately the establishment of reproductive isolation when gene flow is present (Elmer & Meyer 2011). Less clear, however, are the genetic mechanisms that cause speciation, particularly when ongoing gene flow is occurring. Now, in this issue, Franchini et al. (2014) employ a classic genetic mapping approach augmented with new genomic tools to elucidate the genomic architecture of ecologically divergent body shapes in a pair of sympatric crater lake cichlid fishes. From over 450 segregating SNPs in an F2 cross, 72 SNPs were linked to 11 QTL associated with external morphology measured by means of traditional and geometric morphometrics. Annotation of two highly supported QTL further pointed to genes that might contribute to ecological divergence in body shape in Midas cichlids, overall supporting the hypothesis that genomic regions of large phenotypic effect may be contributing to early-stage divergence in Midas cichlids.


Asunto(s)
Cíclidos/anatomía & histología , Cíclidos/genética , Fenotipo , Sitios de Carácter Cuantitativo , Simpatría , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...